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Nongeneric SUSY in Spinning NUT ± Kerr ± Newman
Space ± Time
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The supersymmetric extension of the NUT±Kerr±Newman (NUT ±KN)
space ±time is investigated. Along with four standard supersymmetrie s, this type
of space ±time admits fermionic symmetry generated by the square root of the
bosonic constant of motion except the Hamiltonian. Such a new supersymmetry
corresponds to the Killing±Yano tensor, which plays an important role in solving
various field equations in this space ±time.

1. INTRODUCTION

Spinning particles can be described by a pseudo-classical mechanics

model in which anticommuting c-numbers characterize the spin degrees of

freedom [1±6]. In ref. 7 the symmetries of space±time have been systemati-

cally investigated in terms of the motion of pseudo-classical spinning point

particles described by the d 5 1 supersymmetric extension of the usual
relativistic point particle [1±5]. The general relations between space±time

symmetries and the motion of spinning point particles have been studied

explicitly in refs. 8±10. These methods may be applied to NUT ±KN space±

time, which is a stationary and axisymmetric solution of the combined Ein-

stein±Maxwell equations. The completely integrability of particle motion in

this space±time demands the existence of a nontrivial Stackel-type Killing
tensor K m y [11±13], which give rise to the associated constant of motion

Z 5 1±2 K m y p m p y (1)

quadratic in the four-momentum p m . This constant of motion forms the maxi-

mal number of constants of motion along with the other three well-known
constants of motion: the energy
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E 5 2 K m p m (2)

coming from the time translation invariance generated by the Killing field
K m , the angular momentum

J 5 M m p m (3)

coming from the axial symmetry generated by the Killing field M m , and
the Hamiltonian

H 5 1±2 g m y p m p y (4)

Furthermore , the separability of various field equations, e.g., the Dirac equa-
tion [14], in the NUT ±KN space±time has a direct consequence of the

existence of the Killing±Yano tensor f m y [15], which is defined as an antisym-

metric second-rank tensor satisfying the following Penrose±Floyd equation

[16]:

D( m f y ) l 5 0 (5)

This Killing±Yano 2-form f m y is a square root of the Stackel±Killing ten-

sor K m y :

K m
y 5 f m

l f l
y (6)

Here indices are raised and lowered with the help of the space±time metric

g m y and its inverse.

Recently, Gibbons et al. [7] have been able to show by considering
supersymmetric particle mechanics that the Killing±Yano tensor can be under-

stood as an object generating a ª nongenericº supersymmectry, i.e., a super-

symmetry appearing only in a specific space±time.

In this paper, we investigate the nongeneric supersymmetry in NUT±KN

space±time and discuss the constant of motion associated with it.

The organization of this paper is as follows. In Section 2 we summarize
the formulation of pseudo-classical spinning point particles in an arbitrary

background space±time. In Section 3 we express the general relation between

symmetries, supersymmetries, and constants of motion associated with these

equations. In Section 4 we describe the extra supersymmetries and their

algebras. This type of supersymmetry depends on the existence of a second-
rank tensor field f m y which is referred to as an f-symbol. In Section 5 the

general properties of f-symbols and their relations to Killing±Yano tensors

are given. In Section 6 we investigate the extra supersymmetry and the exact

form of the constants of motion in the NUT ±KN space±time. Finally, Section

7 is devoted to conclusions.
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2. THE PSEUDO-CLASSICAL DESCRIPTION OF SPINNING
PARTICLES

The pseudo-classical limit of the Dirac theory of a spin-1/2 fermion in
curved space±time has recently been described by the supersymmetric exten-

sion of the ordinary relativistic point particle [1±6]. The corresponding config-

uration space is spanned by the real position variables x m ( t ) and the

Grassmann-valued spin variables c (a)( t ), where m , a 5 1, . . . , d, with d the

dimension of space±time. Greek and Latin indices refer to world and Lorentz
indices, respectively, and are converted into each other by the vielbein

e a
m (x) and its inverse e m

a (x). The world-line parameter t is the invariant

proper time:

c 2d t 2 5 2 g m y (x) dx m dx y (7)

We choose units such that c 5 1.

We start with the Lagrangian

L 5
1

2
g m y xÇ m xÇ n 1

1

2
i h ab c a D c b

D t
(8)

where h ab is the flat-space±time (Minkowski) metric. The overdot here and

in the following represents a derivative with respect to t , and the covariant
derivative of the spin variable is

D c a

D t
5 t Ç a 2 xÇ y v a

m b c b (9)

where v a
m b is the spin connection. Since our Lagrangian is a gauge-fixed one,

we have to add appropriate constraints to fix the dynamics completely. We

impose the condition expressed by Eq. (7), which is equivalent to the mass-

shell condition, along with the restriction that spin be spacelike:

Q [ e m axÇ
m c a 5 0 (10)

These supplementary constraints have to be invariant under the transformation
generated through the appropriate Poisson±Dirac bracket with the equations

of motion derived from the above Lagrangian [9, 10]. However, in our

formulation of spinning particle dynamics these conditions are only to be

imposed after solving the equations of the theory.

The solutions of the Euler±Lagrange equations derived from the Lagran-

gian (8) can be considered as generalizations of the concept of geodesics to
spinning space spanned by (x m , c a). The geodesics which represent the world

lines of the physical spinning particles are then obtained with the help of the

supplementary conditions. The classical equations of the theory can be cast

in the following form [7]:
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D 2x m

D t 2 5 2
1

2
i c a c bR m

ab y xÇ
n ,

D c a

D t
5 0 (11)

Since the conjugate momenta are

p m 5
- L

- xÇ m
5 g m y xÇ

y 2
1

2
i v m ab c a c b

p a 5
- L

- c Ç a 5 2
1

2
i c a (12)

the second-class constraint for p a yields the following Poisson±Dirac bracket:

{F, G} 5
- F

- x m
- G

- p m
2

- F

- p m

- G

- x m 1 i ( 2 1)aF
- F

- c a

- G

- c a

(13)

where aF is the Grassmann parity of F: aF 5 (0, 1) for F 5 (even, odd).
With this bracket the canonical relations

{x m , p y } 5 d m
y , { c a, c b} 5 2 i h ab (14)

can be checked. The theory gives the canonical Hamiltonian in the form

H 5 1±2 g m y ( p m 1 v m )( p y 1 v y ) (15)

with v m 5 (1/2)i v m ab c a c b. The time evolution of any function F (x, p, c ) is

given by

dF

d t
5 {F, H } (16)

Equations (13)±(16) describe the canonical formulation of the theory. Since

this formulation loses manifest covariance, we introduce the covariant

momentum

P m [ p m 1 v m 5 g m y xÇ
y (17)

With this variable, the bracket (13) becomes

{F, G} 5 ($ m F )
- G

- P m
2

- F

- P m
($ m G) 2 R m y

- F

- P m

- G

- P y

1 i ( 2 1)aF
- F

- c a

- G

- c a

(18)

where we have used the phase-space covariant derivative operator

$ m F 5 - m F 1 G l
m y P l

- F

- P y
1 v a

m b v b - F

- c a (19)

and the spin-valued Riemann tensor
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R m y 5 1±2 i c a c bRab m y (20)

The Hamiltonian now takes the form

H 5 1±2 g m y P m P y (21)

The dynamical equation (16) remains the same. The constraints (7) and
(10) become

2H 5 g m y P m P y 5 2 1, Q 5 P , c 5 0 (22)

Since these are not compatible with the Poisson±Dirac brackets in general,

they are to be imposed only after solving the equations of the theory. We

see, however, that

{Q, H } 5 0 (23)

As the Hamiltonian itself is trivially conserved, Eq. (23) demands that the

values of H and Q [given in (22)] are preserved in time, and the physical

conditions imposed on the theory are consistent with the equations of motion
(see Rietdijk [9]).

3. SYMMETRIES AND CONSTANTS OF MOTION

The theory of a spinning-particle model possesses a number of symmet-
ries which are very useful in solving the equations of motion explicitly [10]

because of their connection with constants of motion via Noether’ s theorem.

In general, these symmetries can be divided into two classes, generic and

nongeneric symmetries. The first kind exist for any space±time metric g m y (x),

while the latter type depends on the explicit form of the metric. The theory

described by the Lagrangian (8) admits four generic symmetries [8, 9], two
of which are proper-time translations generated by the Hamiltonian H, and

supersymmetry generated by the supercharge Q, Eq. (22). The other two are

chiral symmetry generated by the chiral charge

G * 5 2
i [d/2]

d!
e a1. . .ad c

a1 . . . c ad (24)

and dual supersymmetry generated by the dual supercharge

Q* 5 i {Q, G *} 5
2 i [d/2]

(d 2 1)!
e a1...ade

m a1 P m c a2 . . . c ad (25)

It can be checked that {H, G *} 5 0. Then, the Jacobi identity with (23)

confirms that all the above quantities are constants of motion.

We now find all functions J(x, P , c ) such that
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{H, J } 5 0 (26)

These functions give all symmetries including the nongeneric ones. Using

the bracket (18) simplifies (26) to

P m 1 $ m J 1 R m y
- J

- P m 2 5 0 (27)

Then for components of J in the expansion

J 5 o
`

n 5 0

1

n!
J (n) m 1... m n(x, c ) P m 1... m n (28)

we have the following generalized Killing equations

D( m n 1 1J
(n)
m 1... m n) 1 v a

( m n 1 1b c b
- J (n)

m 1... m n)...

- c a 5 R y ( m n 1 1J
(n 1 1)) y
m 1... m n) (29)

where the parentheses denote full symmetrization over the indices enclosed.

Further we notice that any constant of motion J satisfies

{Q, J } 5 2 c m 1 $ m J 1 R m y
- J

- P y 2 2 ie m a P m
- J

- c a (30)

If the curvature term undergoes three contractions with the anticommuting

spin variables, then with the Bianchi identity R[ m y l ] k 5 0, Eq. (30) can be
written as

{Q, J } 5 2 1 c ? $J 1 i P ?
- J

- c 2 (31)

In particular, for J 5 Q, we obtain the usual supersymmetry algebra:

{Q, Q} 5 2 2iH (32)

Then, the Jacobi identity for two Q ’ s and any constant of motion J con-

firms that

Q 5 {Q, J } (33)

is a superinvariant and hence a constant of motion as well:

{Q, Q } 5 0, {H, Q } 5 0 (34)

This result implies that constants of motion generally come in supermultiplets

(J, Q ), of which the first example is the multiplet (Q, H ) itself, provided

that Q Þ 0.
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We observe from Eq. (31) that a superinvariant is a solution of the

equation

c ? $J 1 i P ?
- J

- c
5 0 (35)

Expanding J (n) m 1... m n of (28) in powers of c a and letting the coefficients be

f (m,n) m 1... m n
a1...am (x), i.e.,

J 5 o
`

m,n 5 0

i [m/2]

m!n!
c a1 . . . c amf (m,n) m 1... m n

a1...am (x) P m 1 . . . P m n (36)

where f (m,n) is completely symmetric in the n upper indices { m k} and com-

pletely antisymmetric in the m lower indices {ai}. Equation (35) gives the
component equation

nf (m 1 1,n 2 1)( m 1... m n 2 1
a0a1...am e m n)a0 5 mD[a1 f (m 2 1,n) m 1... m n

a2...am] (37)

where Da 5 e m
a D m and square brackets denote full antisymmetrization over

the indices enclosed. This equation is called the generalized Penrose±Floyd

equation. It is also sometimes referred to as the square root of the generalized

Killing equation [7].

4. NONGENERIC SUPERSYMMETRIES

The nongeneric supersymmetry of the theory is generated by the phase-

space function Q f ,

Qf 5 J (1) m P m 1 J (0) (38)

where J(1)(x, c ) and J(0)(x, c ) are independent of P . This charge generates

the supersymmetry transformation

d x m 5 2 i e f m
a c a [ 2 iJ(1) m (39)

where the infinte simal parameter e of the transformation is Grassmann-

odd. The ansatz (38), when inserted into the generalized Killing equations

(29), gives

J 0 5
i

3!
Cabc(x) c a c b c c (40)

where the tensors f m
a and Cabc satisfy the conditions

D m f y a 1 D y f m a 5 0 (41)
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and

D m Cabc 5 2 (R m y ab f y
c 1 R m y bc f y

a 1 R m y ca f y
b) (42)

Let there be N such symmetries specified by N sets of tensors ( f m
ia, Ciabc),

i 5 1, . . . , N. The corresponding generators will be

Q i 5 f m
ia P m c a 1

i

3!
Ciabc c a c b c c (43)

Obviously, for f m
a 5 e m

a and Cabc 5 0, the supercharge (22) is precisely of

this form. It is therefore convenient to assign the index i 5 0: Q 5 Q0,

e m
a 5 f m

0a, etc, when we refer to the quantities defining the standard

supersymmetry.

The covariant form (18) of Poisson±Dirac brackets gives the following
algebra for the conserved charges Q i:

{Qi , Qj} 5 2 2Zij (44)

where

Zij 5 1±2 K m y
ij P m P y 1 I m

ij P m 1 G ij (45)

and

K m y
ij 5 1±2 ( f m

ia f y a
j 1 f y

ia f m a
j ) (46)

I m
ij 5 1±2 i c a c bI m

ijab

5 1±2 i c a c b 1 f y
ibD y f m

ja 1 f y
jbD y f m

ia 1 1±2 f m c
i Cjabc 1 1±2 f m c

j Ciabc 2 (47)

G ij 5 2 1±4 c a c b c c c dGijabcd

5 2 1±4 c a c b c c c d 1 R m y ab f m
ic f y

jd 1 1±2 C e
iabCjcde 2 (48)

We note that Kij m y is a symmetric Killing tensor of second rank:

D( l Kij m y ) 5 0 (49)

I m
ij is the corresponding Killing vector:

$( m Iij y ) 5 1±2 i c a c bD( m Iij y )ab

5 1±2 i c a c bRab l ( m Kij y )
l (50)

and Gij is the corresponding Killing scalar:
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$ m G ij 5 2 1±4 c
a c b c c c dD m G ijabcd

5 1±2 i c a c bRab l m I l
ij (51)

The functions Zij satisfy the generalized Killing equations and their bracket

with the Hamiltonian vanishes. Hence, they are constants of motion. For i 5
j 5 0, Eq. (43) gives the usual supersymmetry algebra (32). If i or j is not

equal to zero, Zij corresponds to new bosonic symmetries unless K m y
ij 5

l (ij)g
m y with l (ij) a constant (may be zero). Then the corresponding Killing

vector I m
ij and Killing scallar G ij disappear identically. Further, if l (ij) Þ 0,

the corresponding supercharges are almost the Hamiltonian and hence there

exists a second supersymmetry of the standard type. Thus the theory admits

an N-extended supersymmetry with N $ 2. Again, if we have a second

independent Killing tensor K m y not proportiona l to g m y , there exists a genuine
new type of supersymmetry.

Following (34), we see that {Qi , Q} 5 0 and hence Qi is a superinvariant.

The condition for this is

K m y
0i 5 f m

ae
y a 1 f y

ae
m a 5 0 (52)

As the Zij are symmetric in (ij ), we can diagonalize them. This provides
the algebra

{Qi , Qj} 5 2 2i d ijZi (53)

where Zi are N 1 1 conserved bosonic charges. If all Qi satisfy condition (52),

the first of these diagonal charges (with i 5 0) is the Hamiltonian: Z0 5 H.

5. PROPERTIES OF THE f-SYMBOLS

The f-symbol is the second-rank tensor

f m y 5 f m ae
a
y (54)

Condition (41) then gives

D y f l m 1 D l f y m 5 0 (55)

This implies that the divergence on the first index of the f-symbol vanishes:

D y f y
m 5 0 (56)

On contraction, Eq. (55) gives

D y f y
m 5 2 - m f y

y (57)

and hence the f-symbol will also be divergenceless on the second index if

and only if its trace is constant:
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D y f y
m 5 0 Û f m

m 5 constant (58)

Since g m y is a trivial solution of Eq. (55), we may subtract it from the f-
symbol. Then, taking the constant equal to zero, f can be made traceless.

From Eq. (46) with f m
0a 5 e m

a , the symmetric part of the ith f-symbol is

the tensor

S m y [ Ki0 m y 5 1±2 ( f m y 1 f y m ) (59)

which satisfies the generalized Killing equation

D( m S y l ) 5 0 (60)

Also, the antisymmetric part can be constructed as

B m y 5 2 B y m 5 1±2 ( f m y 2 f y m ) (61)

satisfying the condition

D y B l m 1 D l B y m 5 D m S y l (62)

Equations (55) and (62) indicate that f is completely symmetric if it is

covariantly constant.

We now consider the case in which the f-symbol is completely antisym-
metric: f m y 5 B m y . Then condition (52) implies that the supercharge Qf will

anticommute with ordinary supersymmetry Q in the sense of Poisson±Dirac

brackets. Also, Eq. (58) is trivially satisfied in this case. It is possible to say

much more about the explicit form of the quantities introduced above.

Let us consider that the symmetric part of a certain tensor fi m y vanishes:

S m y
i 5 K m y

i0 5 0 (63)

Then the corresponding Killing vector and tensor also become zero. Thus,

for this particular i, Zi0 5 0 which implies that Qi is superinvariant, i.e.,

{Q i , Q} 5 0 (64)

For antisymmetric f m y , Eq. (55) gives

D y B l m 5 2 D l B y m (65)

Since B m y is antisymmetric, Eq. (65) implies that the gradient is com-

pletely antisymmetric:

D m B y l 5 D[ m B y l ] [ H m y l (66)

The second covariant derivative of f m y , with commutation of the derivatives

and application of Eq. (55) gives the identity
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D m D y f l k 5 R s
y l m f s k 1 1±2 (R s

y l k f m s 1 R s
m l k f y s 2 R s

m y k f l s ) (67)

For antisymmetric f m y , Eq. (67) implies

D m H y l k 5 1±2 (R s
y l m f s k 1 R s

l k m f s y 1 R s
k y m f s l ) (68)

Comparing Eq. (68) with Eq. (42), we find that

2 1±2 Cabc 5 Habc 5 e m
a e y

be
l
cH m y l (69)

modulo a covariantly constant term. Equation (37) with m 5 2, n 5 1 gives

this result. The covariantly constant three-index tensor Cabc provides another

independent symmetry corresponding to the Killing vector

I m 5 1±2 i c a c be c
m Cabc (70)

In order to construct a constant of motion, a particular solution of Eq. (42)

is needed. Thus the covariantly constant term can be chosen to vanish. If

D m Cabc 5 0, then

$ m I y 5 0 (71)

and automatically I m satisfies the generalized Killing equation.
According to Eq. (63), K m y

0i 5 0, and C0abc 5 0 identically. Hence the

right-hand side of Eq. (47) becomes

Ii0 m y l [ Ii0 m abe
a
y e

b
l 5 D l Bi m y 1 1±2 Ci m y l 5 0 (72)

where the last equality follows from Eq. (69). Also, the Killing scalar G i0 5
0, because of the cyclic Bianchi identity for R m y l k and C0abc 5 0. Thus Eq.
(64) is justified.

6. SPINNING NUT ± KERR± NEWMAN SPACE± TIME

We now apply the results of the previous sections to the motion of

spinning particles in NUT ±Kerr±Newman space±time and investigate the
existence of a new type of supersymmetry. The NUT±KN space±time has

the metric

ds2 5 r 2( D 2 1dr2 1 d u 2) 1 r 2 2sin2 u [a dt 2 (r 2 1 a 2) d f ]2

2 D r 2 2 F dt 2 1 a 2
(n 2 a cos u )2

a 2 d f G
2

(73)

with

D 5 r 2 1 a 2 2 n 2 2 2Mr 1 q 2

r 2 5 r 2 1 (n 2 a cos u )2
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where M is the mass, q the charge, a ( 5 J /M ) the specific angular momentum,

and n the NUT parameter. The electromagnetic field in this space±time is

given by

F 5 q r 2 4[r 2 2 (n 2 a cos u )2]dr Ù F dt 2 1 a 2
(n 2 a cos u )2

a 2 d f G
1 2q r 2 4(n 2 a cos u )r sin u d u Ù [a dt 2 (r 2 1 a 2) d f ] (74)

The NUT ±KN space±time admits two independent Stackel±Killing tensors,

as was found in ref. 12. These are the metric tensor g m n and the Stackel±Killing
tensor K m n , and their corresponding conserved quantities are the Hamiltonian

H and the quantity Z. For supersymmetric extension of this result, we use

the antisymmetric Killing±Yano tensor f m n found by Penrose and Floyed [16],

which satisfies Eq. (55) and is the f-symbol of the double vector f a
m as defined

in (54). The Stackel±Killing tensor K m n is exactly the covariant square of

this tensor. Then the new supersymmetry in spinning NUT ±KN space±time
is obtained from a supercharge as given in Eq. (43) with the f-symbol and

a corresponding three-index tensor Cabc given by Eq. (69).

We first derive the explicit expression for the new supercharge. Using

this, we then obtain the killing vector I m and the Killing scalar G which

correspond to the Stackel±Killing tensor K m n and define the conserved
charge Z.

The Killing±Yano tensor in spinning NUT ±KN space±time is obtained

from [16]

1

2
f m n dx m Ù dx y 5 2 (n 2 a cos u ) dr Ù F dt 2 1 a 2

(n 2 a cos u )2

a 2 d f G
2 r sin u d u Ù [a dt 2 (r 2 1 a 2) d f ] (75)

The vielbein e a
m (x) correspending to the metric (73) has the following

expressions:

e 0
m dx m 5 2 ! D

r F dt 2 1 a 2
(n 2 a cos u )2

a 2 d f G
e 1

m dx m 5
r

! D
dr

e 2
m dx m 5 r d u

e 3
m dx m 5 2

sin u
r

[a dt 2 (r 2 1 a 2) d f ] (76)

We thus get the following components of f a
m (x):
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f 0
m dx m 5 2

r

! D
(n 2 a cos u ) dr

f 1
m dx m 5 ! D

r
(n 2 a cos u ) F dt 2 1 a 2

(n 2 a cos u )2

a 2 d f G
f 2

m dx m 5
r sin u

r
[a dt 2 (r 2 1 a 2) d f ]

f 3
m dx m 5 r r d u (77)

and indeed, this f a
m (x) satisfies Eq. (41). To get a conserved quantity we now

need to find Cabc(x). Using Eq. (69), its components are given as follows:

C012 5
2a sin u

r
, C013 5 0, C023 5 0, C123 5 2

2 ! D
r

(78)

With the help of the quantities derived in Eqs. (77) and (78) we obtain from

Eq. (43) the generator Qf of the new supersymmetry for spinning NUT ±KN

space±time. From Eqs. (46)±(48) we respectively construct the Killing tensor,

vector, and scalar. The results are

K m y (x) dx m dx y

5
2 r 2(n 2 a cos u )2

D
dr2 1

D (n 2 a cos u )2

r 2

3 F dt 2 1 a 2
(n 2 a cos u )2

a 2 d f G
2

1
r 2 sin2 u

r 2 [a dt 2 (r 2 1 a 2) d f ]2 1 r 2r 2d u 2 (79)

I m (x) dx m 5
2 2i

r 2 (r sin u c 1 1 ! D cos u c 2)(a sin u c 0 2 ! D c 3)

3 a dt 2 (r 2 1 a 2) d f ]

2 i ! D cos u c 2(a sin u c 0 2 ! D c 3) d f

1 i ! D (rsin u c 1 1 ! D cos u c 2) c 3 d f

1
ia sin u

! D
[r c 0 c 3 2 (n 2 a cos u ) c 1 c 2] dr

2 i ! D [(n 2 a cos u ) c 0 c 3 1 r c 1 c 2] d u (80)
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G 5
2q (n 2 a cos u )

r 2 c 0 c 1 c 2 c 3 (81)

The expression for Q f and (79)±(81) then define the conserved charge Z 5
1/2 i {Qf , Qf}.

7. CONCLUSIONS

The spinning space±time is the extension of the ordinary space±time

with the antisymmetric Grassmann variables to describe the spin degrees of

freedom. The standard antisymmetric spin tensor Sab, which appears in the

definition of the generators of the local Lorentz transformations, is related
to these spin variables by Sab 5 2 i c a c b. This relation makes the physical

interpretation of the equations (79)±(81) more clear. Using the Dirac±Poisson

brackets (13), it can be shown that these equations satisfy the SO(3,1) algebra.

The generators of the full Lorentz transformations are given by Mab 5 Lab

1 Sab with Lab the orbital part. Likewise, the generators of other symmetries

such as Z also receive a spin-dependent part. For scalar (spinless) point
particles in NUT ±KN space±time the Stackel±Killing tensor K m y given in

(79) gives a constant of motion which for spinning point particles receives

nontrivial contributions from spin. This spin-dependent part contains the

Killing vector and Killing scalar computed in Section 6. The antisymmetric

Killing±Yano tensor f m y , which is the square root of the Stackel±Killing

tensor, describes this spin-dependent part.
In refs. 15 and 17 antisymmetric f-symbols and their corresponding

Killing tensors were studied in the context of obtaining solutions of the Dirac

equation in nontrivial curved space±time. The Killing±Yano and Stackel±

Killing tensors stated above have precise correspondence with them. The

analysis given in Section 5 shows that they belong to a larger class of possible
structures which generate generalized supersymmetry algebras.
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